报告人:林路 教授
报告地点:我院213室
主办单位:我院
报告(一)
报告题目:Online Updating Statistics for Heterogenous Updating Regressions via Homogenization Techniques
报告摘要:We propose a homogenization strategy to represent the heterogenous models that are gradually updated in the process of data streams. With the homogenized representations, we can easily construct various online updating statistics such as parameter estimation, residual sum of squares and $F$-statistic for the heterogenous updating regression models. The main difference from the classical scenarios is that the artificial covariates in the homogenized models are not identically distributed as the natural covariates in the original models, consequently, the related theoretical properties are distinct from the classical ones. The asymptotical properties of the online updating statistics are established, which show that the new method can achieve estimation efficiency and oracle property, without any constraint on the number of data batches. The behavior of the method is further illustrated by various numerical examples from simulation experiments.
报告时间:06月18日16:00-16:50
报告(二)
报告题目:参数和半参数模型的在线更新统计推断
报告摘要:报告综述参数和半参数模型的在线更新统计推断方法的进展。
报告时间:06月18日16:50-17:40
报告(三)
报告题目:分位数回归中的分布式算法
报告摘要:报告介绍一种分位数回归中的加权分布式算法。
报告时间:06月18日17:40-18:30
报告人简介:林路是山东大学金融研究院教授、博士生导师;在南开大学获得博士学位后,先在南开大学任教,然后到山东大学任教至今;从事大数据、高维统计、非参数和半参数统计以及金融统计等方的研究,在国际统计学、机器学习和相关应用学科顶级期刊(包括Annals of Statistics, Journal of Machine Learning Research, PLoS computational biology)和其它重要期刊发表研究论文110余篇;主持过多项国家自然科学基金课题、博士点专项基金课题、山东省自然科学基金重点项目等;获得国家统计局颁发的统计科技进步一等和二等奖(排名第一),山东省优秀教学成果一等奖(排名第一);是教育部应用统计专业硕士教育指导委员会成员,山东省政府参事。