报告题目:Weak convergence of path-dependent SDEs with irregular coefficients
报告人:鲍建海 副教授
报告摘要:In this talk we develop via Girsanov's transformation a perturbation argument to investigate weak convergence of Euler-Maruyama (EM) scheme for path-dependent SDEs with Holder continuous drifts. This approach is available to other scenarios, e.g., truncated EM schemes for non-degenerate SDEs with finite memory or infinite memory. Also, such a trick can be applied to study weak convergence of truncated EM scheme for a range of stochastic Hamiltonian systems with irregular coefficients and with memory. Moreover, the weak convergence of path-dependent SDEs under integrability condition is investigated by establishing, via the dimension-free Harnack inequality, exponential integrability of irregular drifts w.r.t. the invariant probability measure constructed explicitly in advance. This is a joint work with Professor Jinghai Shao.
报告时间:4月17日 10:20-11:20
报告地点:我院213会议室
报告人简介:现任职于中南大学数学与我院,主要研究领域为马氏过程与随机分析.
学习经历
2002.09-2004.07 曲阜师范大学 应用数学 本科 学士学位
2004.09-2007.03 中南大学 概率论 硕士研究生 硕士学位
2008.09-2011.09 中南大学 概率论 博士研究生
2009.10-2013.04 Swansea University 概率论 博士研究生 博士学位
工作经历
2012.09-2013.08 Wayne state University Research Fellow
2017.01-2019.12 Swansea University postdoctor
2013.09-至今 中南大学
先后在Stoch. Proc. Appl.,Bernoulli, Electron. J. Probab., J. Theoret. Probab., Potential Anal., SIAM J. Control Optim., SIAM J. Math. Appl., IME等期刊上发表多篇学术论文.